

Characterizing Soil Colloids (10 points)

Part A. Motions of colloidal particles (1.6 points)

A.1 (0.8pt) $v_0 = \tau =$ **A.2** (0.8pt)

v(t) =

the inequality specifying the range of t_i that needs to be considered:

Part B. Effective equation of motion (1.8 points)

B.1 (1.0pt) (use C, δ, t only)

 $\left< \Delta x(t) \right> =$

 $\langle \Delta x(t)^2 \rangle =$

B.2 (0.8pt)		
$\alpha =$		
$\beta =$		

Part C. Electrophoresis (2.7 points)

C.1 (0.5pt) (use $v, \delta, n(x_0), \frac{dn}{dx}(x_0)$ only)

 $N_{+}(x_{0}) =$

C.2 (0.7pt) (use $C, \delta, n(x_0), \frac{dn}{dx}(x_0)$ only)

 $J_D(x_0) =$

(use C, δ only)

D =

(use D, t only)

 $\langle \Delta x(t)^2 \rangle =$

C.3 (0.5pt)

(use n(x), T, Q, E, k only)

 $\frac{dn}{dx}(x) =$

C.4 (0.5pt)

 $\langle v(t) \rangle =$

u =

C.5 (0.5pt)

(use k, γ, T only)

D =

Part D. Mean square displacement (2.4 points)

D.1 (1.0pt)

 $N_A =$

D.2 (0.8pt) (use <i>u</i> , <i>D</i> , <i>t</i> only)
for general <i>t</i> :
$\left< \Delta x(t)^2 \right> =$
for small <i>t</i> :
$\left< \Delta x(t)^2 \right> \propto$
for large <i>t</i> :
$\left< \Delta x(t)^2 \right> \propto$
the characteristic time t_* :
$t_* =$
Log-log plot of $\langle \Delta x(t)^2 \rangle$ against t : (also indicate the approximate location of t_* in the graph)
$\log \langle \Delta x(t)^2 \rangle$
\downarrow

D.3 (0.6pt) (use D, u_0, δ_0, t only) for small t :
$\langle \Delta x(t)^2 \rangle =$
for intermediate <i>t</i> :

 $\langle \Delta x(t)^2 \rangle =$

for large *t*:

 $\langle \Delta x(t)^2 \rangle =$

Part E. Water purification (1.5 points)

E.1 (1.5pt)

c =