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Characterization of Soil Colloids (10 points)
Colloidal science is useful to characterize soil particles becausemany of themcan be regarded as colloidal
particles of micrometer size. For example, Brownian motion (random motion of colloidal particles) can
be used to measure particle sizes.

Part A. Motions of colloidal particles (1.6 points)
We analyze the one-dimensional Brownian motion of a colloidal particle with mass 𝑀 . The equation of
motion for its velocity 𝑣(𝑡) reads:

𝑀 ̇𝑣 = −𝛾𝑣(𝑡) + 𝐹(𝑡) + 𝐹ext(𝑡), (1)

where 𝛾 is the friction coefficient, 𝐹(𝑡) is a force due to random collisions with water molecules, and
𝐹ext(𝑡) is an external force. In Part A, we assume 𝐹ext(𝑡) = 0.

A.1 Consider that awatermolecule collideswith the particle at 𝑡 = 𝑡0, giving impulse
𝐼0, and 𝐹(𝑡) = 0 afterward. If 𝑣(𝑡) = 0 before the collision, 𝑣(𝑡) = 𝑣0𝑒−(𝑡−𝑡0)/𝜏 for
𝑡 > 𝑡0. Determine 𝑣0 and 𝜏 , using 𝐼0 and necessary parameters in Eq.(1).

0.8pt

In the following, you may use 𝜏 in your answers.

A.2 Actually, water molecules collide with the particle one after another. Suppose
the 𝑖th collision gives the impulse 𝐼𝑖 at time 𝑡𝑖 and determine 𝑣(𝑡) on condition
that 𝑡 > 0 and 𝑣(0) = 0. Also give the inequality specifying the range of 𝑡𝑖 that
needs to be considered for a given 𝑡. In the answer sheet, it is not necessary to
specify this range in the expression for 𝑣(𝑡).

0.8pt

Part B. Effective equation of motion (1.8 points)
Results so far imply that particle velocities 𝑣(𝑡) and 𝑣(𝑡′) may be regarded as uncorrelated random quan-
tities if |𝑡 − 𝑡′| ≫ 𝜏 . On this basis, we introduce a theoretical model to approximately describe the one-
dimensional Brownian motion, where the velocity changes randomly at each time interval 𝛿 (≫ 𝜏), i.e.,

𝑣(𝑡) = 𝑣𝑛 (𝑡𝑛−1 < 𝑡 ≤ 𝑡𝑛), (2)

with 𝑡𝑛 = 𝑛𝛿 (𝑛 = 0, 1, 2, ⋯) and a random quantity 𝑣𝑛. It satisfies

⟨𝑣𝑛⟩ = 0, ⟨𝑣𝑛𝑣𝑚⟩ = {𝐶 (𝑛 = 𝑚),
0 (𝑛 ≠ 𝑚), (3)

with a parameter 𝐶 depending on 𝛿. Here ⟨𝑋⟩ indicates the expectation value of 𝑋. That is, if you draw
random numbers 𝑋 infinite times, the mean will be ⟨𝑋⟩.
Now we consider the particle displacement Δ𝑥(𝑡) = 𝑥(𝑡) − 𝑥(0) for 𝑡 = 𝑁𝛿 with an integer 𝑁 .

B.1 Determine ⟨Δ𝑥(𝑡)⟩ and ⟨Δ𝑥(𝑡)2⟩ using 𝐶, 𝛿, and 𝑡. 1.0pt
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B.2 The quantity ⟨Δ𝑥(𝑡)2⟩ is called themean square displacement (MSD). It is a char-
acteristic observable of the Brownianmotion, which corresponds to the limiting
case 𝛿 → 0. From this, we can show 𝐶 ∝ 𝛿𝛼 and ⟨Δ𝑥(𝑡)2⟩ ∝ 𝑡𝛽. Determine the
values of 𝛼 and 𝛽.

0.8pt

Part C. Electrophoresis (2.7 points)
Here we discuss electrophoresis, i.e., transport of charged particles by an electric field. Suspension of
colloidal particles with mass 𝑀 and charge 𝑄 (> 0) is put in a narrow channel with a cross-section 𝐴
(Fig.1(a)). We ignore the interaction between particles, effects of the wall, the fluid, the ions therein, and
gravity.

Fig.1: Setting for Part C.

By applying a uniform electric field 𝐸 in the 𝑥-direction, particles are transported and their concentration
𝑛(𝑥) (particle number per unit volume) becomes non-uniform (Fig.1(b)). When 𝐸 is removed, this non-
uniformity gradually disappears. This is due to Brownian motion of particles. If 𝑛(𝑥) is not uniform, the
numbers of right-going and left-going particles may differ (Fig.1(c)). This generates a particle flux 𝐽𝐷(𝑥),
the mean number of particles flowing at 𝑥 along the 𝑥-axis per unit cross-sectional area and unit time.
This flux is known to satisfy

𝐽𝐷(𝑥) = −𝐷𝑑𝑛
𝑑𝑥(𝑥), (4)

where 𝐷 is called the diffusion coefficient.

Now let's assume, for simplicity, that half of the particles have velocity+𝑣 and the other half have velocity
−𝑣. Let 𝑁+(𝑥0) be the number of particles with velocity +𝑣 that cross 𝑥0 from left to right per unit cross-
sectional area and unit time. For particles with velocity +𝑣 to cross 𝑥0 in the time interval 𝛿, they should
be in the shaded region of Fig.1(c). Since 𝛿 is small, we have 𝑛(𝑥) ≃ 𝑛(𝑥0) + (𝑥 − 𝑥0) 𝑑𝑛

𝑑𝑥 (𝑥0) in this region.

C.1 Express 𝑁+(𝑥0) using necessary quantities from 𝑣, 𝛿, 𝑛(𝑥0), and 𝑑𝑛
𝑑𝑥 (𝑥0). 0.5pt

We define 𝑁−(𝑥0) as the counterpart of 𝑁+(𝑥0) for the velocity −𝑣. With this, we have 𝐽𝐷(𝑥0) = ⟨𝑁+(𝑥0)−
𝑁−(𝑥0)⟩. According to Eq.(3), we have ⟨𝑣2⟩ = 𝐶.

C.2 Determine 𝐽𝐷(𝑥0) using necessary quantities from𝐶, 𝛿, 𝑛(𝑥0), and 𝑑𝑛
𝑑𝑥 (𝑥0). Using

this and Eq.(4), express 𝐷 in terms of 𝐶 and 𝛿, and ⟨Δ𝑥(𝑡)2⟩ in terms of 𝐷 and 𝑡.
0.7pt
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Now we discuss the effect of osmotic pressure Π. It is given by Π = 𝑛
𝑁𝐴

𝑅𝑇 = 𝑛𝑘𝑇 with the Avogadro
constant 𝑁𝐴, the gas constant 𝑅, temperature 𝑇 , and the Boltzmann constant 𝑘 = 𝑅

𝑁𝐴
. Let us consider

the non-uniform concentration formed under the electric field 𝐸 (Fig.1(b)). Since 𝑛(𝑥) depends on 𝑥, so
doesΠ(𝑥). Then the forces due to Π(𝑥) andΠ(𝑥+Δ𝑥)must be balanced with the total force from the field
𝐸 acting on the particles (Fig.2). Here we consider small Δ𝑥, so that 𝑛(𝑥) can be regarded as constant
over this range, while 𝑛(𝑥 + Δ𝑥) − 𝑛(𝑥) ≃ Δ𝑥 𝑑𝑛

𝑑𝑥 (𝑥).

Fig.2: Force balance.

C.3 Express 𝑑𝑛
𝑑𝑥 (𝑥) using 𝑛(𝑥), 𝑇 , 𝑄, 𝐸, and 𝑘. 0.5pt

Let us discuss the balance of the flux now. Besides the flux 𝐽𝐷(𝑥) due to the Brownian motion, there is
also a flux due to the electric field, 𝐽𝑄(𝑥). It is given by

𝐽𝑄(𝑥) = 𝑛(𝑥)𝑢, (5)

where 𝑢 is the terminal velocity of particles driven by the field.

C.4 To determine 𝑢, we use Eq.(1) with 𝐹ext(𝑡) = 𝑄𝐸. Since 𝑣(𝑡) is fluctuating, we
consider ⟨𝑣(𝑡)⟩. Assuming ⟨𝑣(0)⟩ = 0 and using ⟨𝐹(𝑡)⟩ = 0, evaluate ⟨𝑣(𝑡)⟩ and
obtain 𝑢 = lim𝑡→∞⟨𝑣(𝑡)⟩.

0.5pt

C.5 The flux balance reads 𝐽𝐷(𝑥) + 𝐽𝑄(𝑥) = 0. Express the diffusion coefficient 𝐷 in
terms of 𝑘, 𝛾, and 𝑇 .

0.5pt

Part D. Mean square displacement (2.4 points)
Suppose we observed the Brownian motion of an isolated, spherical colloidal particle with radius 𝑎 =
5.0 𝜇m in water. Figure 3 shows the histogram of displacements Δ𝑥 measured in the 𝑥-direction at every
interval Δ𝑡 = 60 s. The friction coefficient is given by 𝛾 = 6𝜋𝑎𝜂 with water viscosity 𝜂 = 8.9 × 10−4 Pa ⋅ s
and the temperature was 𝑇 = 25 ∘C.
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Fig.3: Histogram of displacements.

D.1 Estimate the value of 𝑁𝐴 without using the fact that it is the Avogadro constant,
up to two significant digits from the data in Fig.3. The gas constant is 𝑅 =
8.31 J/K ⋅ mol. Do not use the value of the Boltzmann constant 𝑘 given in General
Instructions. As for the Avogadro constant, you might obtain a value different
from that in General Instructions.

1.0pt

Now we extend the model in Part B to describe the motion of a particle with charge 𝑄 under an electric
field 𝐸. The particle velocity 𝑣(𝑡) considered in Eq.(2) should be replaced by 𝑣(𝑡) = 𝑢 + 𝑣𝑛 (𝑡𝑛−1 < 𝑡 ≤ 𝑡𝑛)
with 𝑣𝑛 satisfying Eq. (3) and 𝑢 being the terminal velocity considered in Eq.(5).

D.2 Express the MSD ⟨Δ𝑥(𝑡)2⟩ in terms of 𝑢, 𝐷, and 𝑡. Obtain approximate power
laws for small 𝑡 and large 𝑡, aswell as the characteristic time 𝑡∗ where this change
occurs. Drawa roughgraph ofMSD in a log-log plot, indicating the approximate
location of 𝑡∗.

0.8pt

Next, we consider swimming microbes (Fig.4(a)), in one dimension for simplicity (Fig.4(b)). These are
spherical particles with radius 𝑎. They swim at velocity either +𝑢0 or−𝑢0, the sign chosen randomly at
every time interval 𝛿0 without correlation. The observed motion is a combination of displacements due
to swimming and those due to the Brownian motion of a spherical particle.

Fig.4: (a) Motion of microbes. (b) Its one-dimensional version.
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D.3 Figure 5 displays the MSD ⟨Δ𝑥(𝑡)2⟩ of those microbes, showing different power
laws for small, large, and intermidiate 𝑡, as indicated by dashed lines. Obtain
the power law for each time range and express it using necessary quantities
from 𝐷, 𝑢0, 𝛿0, and 𝑡.

Fig.5: Mean square displacement of the microbes.

0.6pt

Part E. Water purification (1.5 points)
Here we discuss the purification of water including colloid-like soil particles, by adding electrolytes to
coagulate them. Particles interact through van der Waals force and electrostatic force, the latter includ-
ing effects of both surface charges and the surrounding layer of oppositely charged ions (such ions and
their layer are called counter-ions and the electric double layer, respectively; see Fig.6(a)). As a result,
the interaction potential for particle distance 𝑑 (Fig.6(b)) is given by

𝑈(𝑑) = −𝐴
𝑑 + 𝐵𝜖(𝑘𝑇 )2

𝑞2 𝑒−𝑑/𝜆, (6)

where 𝐴 and 𝐵 are positive constants, 𝜖 is the dielectric constant of water, and 𝜆 is the thickness of the
electric double layer. Assuming that charges of ions are ±𝑞, we have

𝜆 = √ 𝜖𝑘𝑇
2𝑁𝐴𝑞2𝑐 , (7)

where 𝑐 is the molar concentration of ion.
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Fig.6: (a) Surface charges of colloidal particles and counter-ions. (b) Definition of the distance
𝑑.

E.1 Addition of sodium chloride (NaCl) to the suspension causes colloidal particles
to coagulate. Determine the lowest concentration 𝑐 of NaCl necessary for co-
agulation. It is sufficient to consider two particles without thermal fluctuations,
i.e., 𝐹(𝑡) = 0 in Eq.(1), and assume that the terminal velocity for the given po-
tential force is reached instantaneously.

1.5pt


